Current advances in wheat breeding at UC Davis CWC Collaborators meeting October 17

Jorge Dubcovsky, Alicia del Blanco, Oswaldo Chicaiza, and Phil Mayo

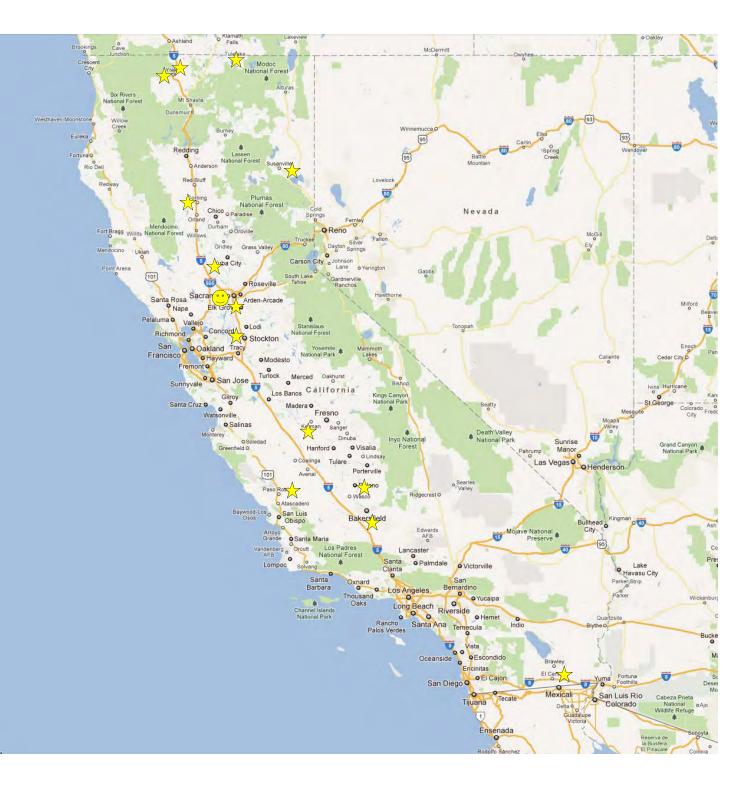
- Bread wheat breeder (HRS and HWS) Oswaldo Chicaiza
- Durum wheat. Alicia del Blanco
- Regional Testing Phil Mayo/ Diane Prato-Mayo/ Sam Fraser

Funded by: California Wheat Commission/UC Discovery & CCIA

USDA-CSREES TCAP (Triticeae Coordinated Agricultural Projects)

New plot combine

An example of a good partnership!


UCD Wheat Breeding Royalties	\$ 19,389
Dept. of Plant Sciences	\$ 19,389
College of Ag. & Env. Sci.	\$ 38,777
Office of Research:	\$ 38,777
CWC/CCIA	\$ 38,777
	\$ 155,108

Small Grains Regional Trials 13 locations

2013. Phil Mayo

Small Grains website

http://smallgrains.ucdavis.edu/

- Cultivar performance
 - 13 locations
- Disease resistance notes
 - Stripe rust
 - Leaf rust
 - Septoria
 - BYDV
- Quality evaluations (CWC)
 - Bread quality
 - Pasta quality
- 2013 results available
 - 44 Tables organized by crop and location

Small Grains

Summary of yield performances (2011-2013)

Wheat & triticale (Sacramento, San Joaquin, Imperial Valley, & rainfed)
Durum wheat (Sacramento, San Joaquin, & Imperial Valley)
Barley (Sacramento and San Joaquin Valley, & rainfed)

Agronomy Progress Reports (all crops, all locations by year)

2013 (No. 316) (for a complete PDF click here) 2012 (No. 314) (for a complete PDF click here) 2011 (No. 304) (for a complete PDF click here)

2010 (No. 303)	2005 (No. 290)	2000 (No. 272)
2009 (No. 301)	2004 (No. 288)	1999 (No. 265)
2008 (No. 296)	2003 (No. 286)	1998 (No. 262)
2007 (No. 295)	2002 (No. 279)	
2006 (No. 293)	2001 (No. 276)	

The wheat breeding program

Objective: release wheat commercial varieties (CWC-CCIA funded)

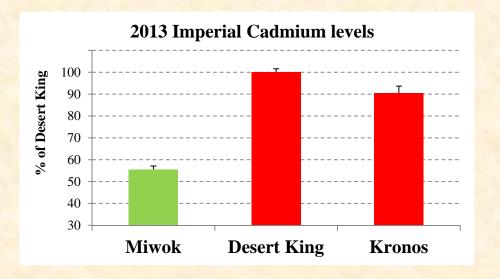
Highlights: 26% of the CA common wheat acreage and 32% of the durum acreage in 2013 was grown with public varieties or varieties developed through UCD-industry collaboration.

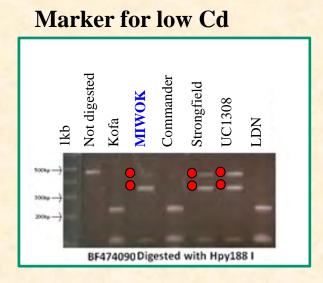
Personnel: Oswaldo Chicaiza and Alicia del Blanco

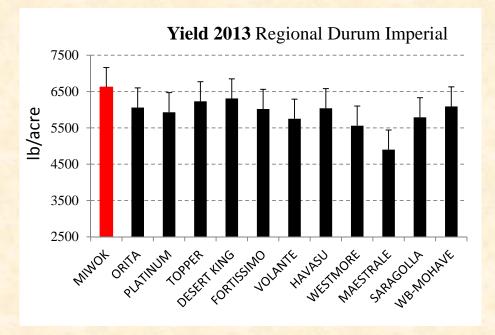
Hard red spring	Hard White Spring	Desert Durum	
Kern (2001)	Clear White (2004)	Desert King (2205)	
Lassik (2008)	Patwin (2006)	Tipai (2010)	
Expresso (WestBread)	Blanca Grande 515 (RSI)	Desert King-high protein (2011)	
Summit 515 (RSI)	Patwin 515 (2012)	Westmore (APB)	
	New Dirkwin (Baglietto Seeds)	Miwok (2013)	
		Kronos Low Cadmium (APB)	

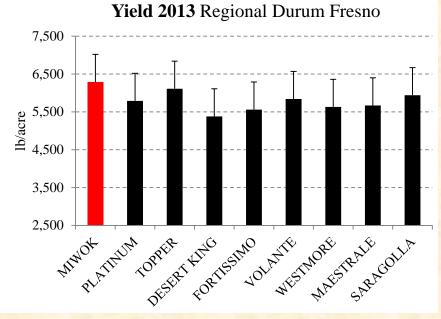
Marker assisted selection information

Objective: identify valuable alleles and develop markers and strategies to accelerate introgression into commercial varieties. T-CAP funded.

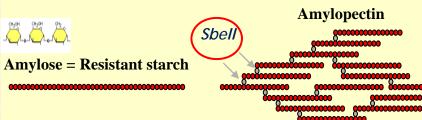

Highlights: we developed protocols for 62 disease resistance genes, 8 quality traits and 4 stress related traits. We generated a public web site for wheat MAS.

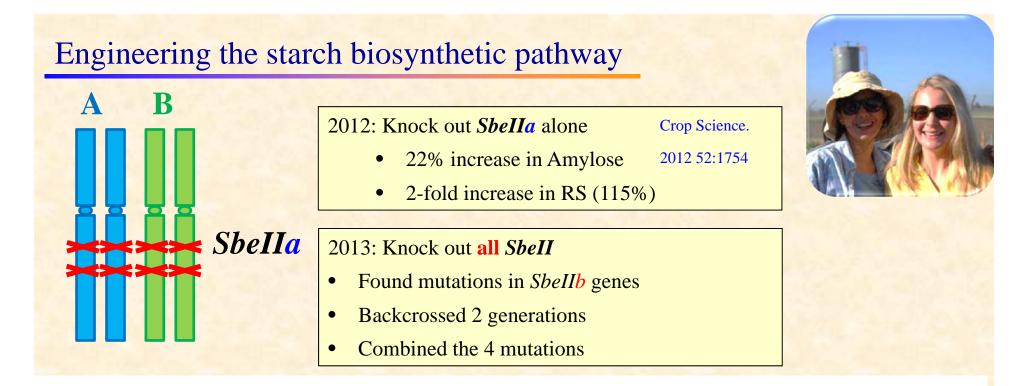

Personnel: Xiaoqin Zhang + multiple students / postdocs


All protocols are publicly available at our website maswheat.ucdavis.edu

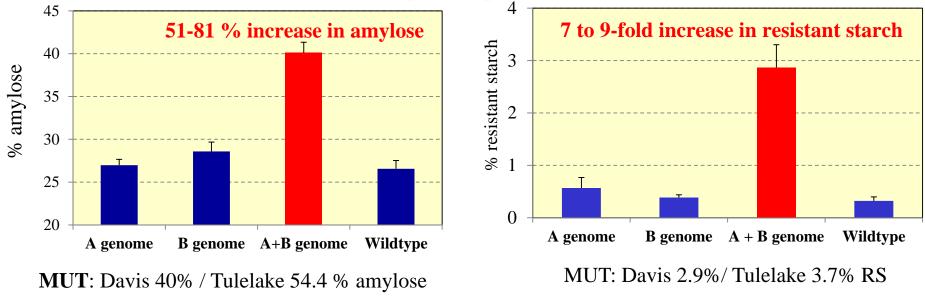

MAS	WHEAT	Mar	Marker Assisted Selection in Wheat			
Fungi Virus	es Insects Quality	Abiotic stress	Data processing	General	Functional markers	
Home Links Google ^m Custom Search	Laboratory Proto Please, click on one o category.				ds for that	

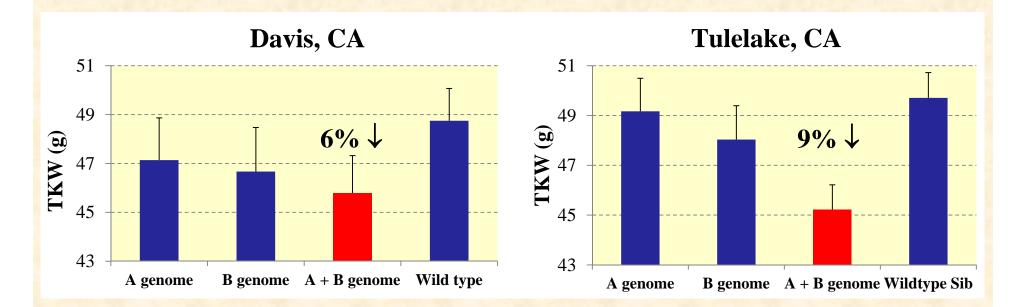
Durum low grain cadmium variety MIWOK




Miwok is the top yielding line in SJ Valley 2011-2013

Improving resistant starch in wheat


- RS consumption has benefits in the large intestine as well as systemic health benefits (reduced risk of diabetes, obesity, heart disease, and cancers of the colon and rectum)
- Recommended dietary fiber
 - 19 to 38 g per day
 - <5% Americans consume this
- Recommended RS
 - No guidelines in US
 - Australia's Division of Human Nutrition: 20 g per day
 - Americans consume ~5 g RS per day
- Breads and cooked cereals/pastas contribute ~40% of RS intake
 - 2g of RS come from cooked cereals and pasta
 - A 10-fold increase in RS would satisfy the suggested 20g/d


800000000000000000

Effect of *sbeIIa* + *sbeIIb* quadruple mutant on amylose and RS

Effect of *sbella* + *sbellb* mutations on TKW

- 1. Knockout of all four Sbell genes reduced TKW by 6-9%. Who will pay?
- 2. We are performing experiments this year to study effect on yield
- 3. We will have enough Kronos quadruple mutant in 2014 for pasta analyses
 - 1. Kronos Ready seed increase and experiments in 2014
 - 2. Desert King BC_2 (2nd generation of 6)
 - 3. Tipai BC_2 (2nd generation of 6)
- 4. We are moving these linked mutations to hexaploid wheat
 - 1. Lassik BC_3 (3rd generation of 6)
 - 2. Patwin 515 $BC_3(3^{rd} \text{ generation of } 6)$

New genomic tools

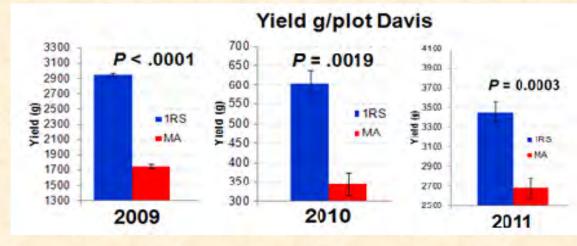
The wheat genome is huge but only 1-2% includes genes 1-2% coding non-coding repetitive

We generated half-billion sequences of expressed wheat genes from Kronos and assembled the sequences of 80,000 wheat genes (Genome Biology 2013)

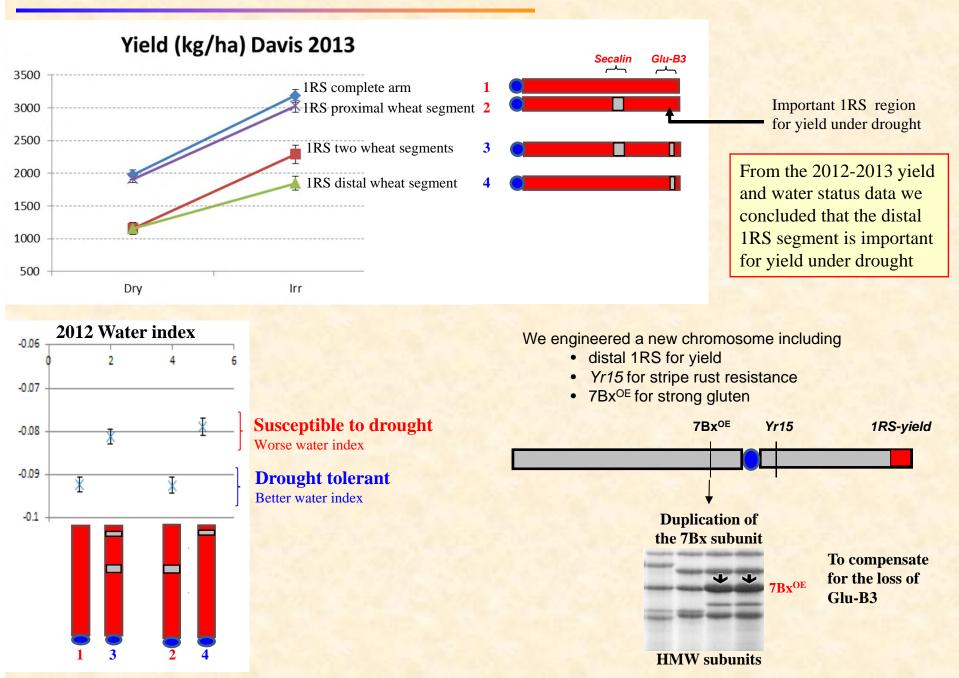
We used these sequences to create an exome-capture platform for wheat

For \$300 it is now possible to re-sequence 80,000 genes from a tetraploid wheat line!

We are re-sequencing a collection of 1000 mutant lines that are expected to carry ~1000 mutations each in the gene regions: a public catalogue of 1,000,000 mutations in wheat!


We would be able to rapidly find mutations for any wheat gene.

Should we tackle the epitopes for gluten intolerance?


Molecular markers for drought tolerance

Molecular markers for drought tolerance

